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Abstract

In this paper we propose a simple and effective way to in-
tegrate structural information in random forests for seman-
tic image labelling. By structural information we refer to
the inherently available, topological distribution of object
classes in a given image. Different object class labels will
not be randomly distributed over an image but usually form
coherently labelled regions. In this work we provide a way
to incorporate this topological information in the popular
random forest framework for performing low-level, unary
classification. Our paper has several contributions: First,
we show how random forests can be augmented with struc-
tured label information. In the second part, we introduce a
novel data splitting function that exploits the joint distri-
butions observed in the structured label space for learn-
ing typical label transitions between object classes. Fi-
nally, we provide two possibilities for integrating the struc-
tured output predictions into concise, semantic labellings.
In our experiments on the challenging MSRC and CamVid
databases, we compare our method to standard random for-
est and conditional random field classification results.

1. Introduction

The field of visual object classification has received great
attention and evolved in a remarkable manner during the
past couple of years. Besides major progresses in the de-
velopment of new image representations, a large variety
of novel machine learning algorithms have been developed
and applied to problems in the computer vision domain like
object detection, classification, tracking, or action recogni-
tion. In this work we present a novel classification algo-
rithm based on random forests, customized to the applica-
tion of semantic image labelling [27, 9], i.e. a per-pixel clas-
sification of an image.

Using supervised learning algorithms for semantic im-
age labelling typically requires a large amount of densely
labelled training data. A label image corresponding to a
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Figure 1. Training data example, as used in our proposed struc-
tured learning random forest. While standard random forests as-
sociate only the center label at position (u, v) to an image patch x,
we incorporate the topology of the local label neighborhood p and
therefore learn valid labelling transitions among adjacent object
categories. Here: person, building and bicycle.

natural scene exhibits structured information, respecting the
topology shown in the scene. For instance, a typical street
scene might result in coherently labelled regions of road,
car, bicyclist and so on. Structured learning [30] provides
ideas to take this form of additional, structural information
into account and therefore intuitively fits to the needs of
semantic image labelling or segmentation. Considering our
example of the street scene, structured learning allows to in-
tegrate the actual label topology in the training process, e.g.
a car should be driving on a road, but not on top of a build-
ing. However, exploiting this form of topological structure
of the label images directly in machine learning algorithms
for computer vision problems is still widely ignored.

For the task of semantic image labelling, state-of-the-art
approaches [16, 17, 13, 24] are typically using complemen-
tary features at different levels within random field mod-
els [18]. Low-level features are mostly calculated on a per-
pixel basis and incorporate local color or texture statistics,
while mid-level features operate on regions or superpixels
to provide shape, continuity or symmetry information. Mo-
tivated by perceptual psychology [3], high-level features in-
troduce global image statistics and information about inter-



object or contextual relations, seeking for proper scene con-
figurations on the image level. In such a way, structural in-
formation is mostly incorporated on the highest, semantic
level. Recently, [31] presented a way to effectively learn a
contextual model named Auto-context. A boosting classi-
fier is trained by iteratively learning from appearance and
contextual information, collecting typical structures from
the images. However, the learning phase is computationally
very demanding. Other approaches like boosted random
fields [29] or SpatialBoost [2] share both the disadvantage
of significant computational complexity when considering
contextual beliefs as weak learners. The work in [4] intro-
duces a generalization of a support vector machine (SVM)
for structured output regression, used to predict bounding
boxes for the task of object localization. Finally, we refer
to [23], which gives a comprehensive tutorial on structured
learning and prediction in computer vision.

In this paper, we provide a simple but effective way to in-
corporate structural information in the popular random for-
est [8, 1, 12] learning algorithm which is considered to be
competitive to other state-of-the-art learning techniques like
boosting or SVMs. Inspired by ideas of structured learning
we provide a novel way to incorporate joint statistics about
the local label neighborhood in the random forest frame-
work for learning typical labelling transitions among object
class categories, as illustrated in Figure 1. In contrast to
standard classification, which can only deal with a single
(atomic) label per training sample during the training pro-
cess, we take structured labelling information of the label
neighborhood into account. Including this information at
the classification level drastically improves the results and
simultaneously counteracts the assignment of meaningless
label configurations, as experienced when using standard
random forests. Our proposed method is easy to implement
and we show superior results on all our conducted experi-
ments for the task of semantic image labelling on the chal-
lenging CamVid [9] and MSRCv2 [27] databases in com-
parison to standard random forests. To sum up, using our
proposed structured learning method possesses several ad-
vantages when used for semantic image labelling:

¢ Including the label topology in the training stage yields
a classification stage, that respects the label configura-
tions observed during training

e Using structured label information in the classification
avoids assigning implausible label transitions

The major drawback of our method is the need for densely
labelled training data. However, this problem is shared with
state-of-the-art image labelling algorithms and the results of
our experiments on the MSRCv2 database indicate that also
non-completely labelled training data are well handled by
our method.

2. Randomized Decision Forests

We start by providing a brief review of the random-
ized decision forests [ 1, 12] and introducing some notations
which will be used in the subsequent sections. Randomized
decision forests exhibit several appealing properties: They
are extremely fast for training and classification, can be eas-
ily parallelized [25], are inherently multi-class capable, tend
not to overfit and are robust to label noise [8].

A (binary) decision tree is a tree-structured classifier
which makes a prediction by routing a feature sample x €
X through the tree to a leaf, where the actual classification
is taking place. A leaf LF(m) € T is the simplest form of
a decision tree and is able to cast a class prediction 7 € )
for any sample it is reached by. In all other cases, a decision
tree is a node ND(v), ¢;,t,.) € T, which is characterized by a
binary test (or split) function ¢(x) : X — {0,1}, a left de-
cision sub-tree ¢; € T and a right decision sub-tree ¢, € T.
The role of the test function is to decide whether a sample
feature x reaching the node should be forwarded to its left
decision sub-tree ¢; if ¢(x) = 0, or to its right decision
sub-tree ¢, if ¢ (x) = 1.

A (binary) decision forest is an ensemble ' C T of
(binary) decision trees which makes a prediction about a
sample feature by averaging over the single predictions col-
lected from the trees in the ensemble.

Class prediction. A class prediction for a sample x € X
can be obtained from a tree ¢ € T by recursively branching
the sample down the tree until a leaf is reached. Formally,
we write the tree prediction function h(x|t) : X — ) for
a decision tree t € T recursively as

h(x|ND(¥, t,t,)) = {Zg:?))

h(x|LF(m)) =m.

if ()

0,
ifh(x) =1

b

The class prediction of a sample x € & given a forest
F' can then be obtained from the individual decision tree
predictions as the one receiving the majority of the votes,
ie.,
y* = arg max Z[h(x|t) =y]. (1)
vV ter
where [@Q)] is the Iverson bracket which gives 1 if propo-
sition @) is true and O otherwise. Combining the outputs
of multiple decision trees into a single classifier supports
the ability to generalize and mitigates the risk of overfitting,
which may affect single decision trees.

Randomized training. We train the binary decision for-
est according to the extremely randomized trees algorithm
[12]. Each tree in a forest is trained independently on a ran-
dom subset of the training set D C X x Y according to a



recursive learning procedure. If D is smaller than a mini-
mum size or if the entropy of its class distribution E(D) is
below a given threshold, a leaf LF(r) is grown where the
class prediction 7 is set to the most represented class in the
training data D, i.e.,

7T € arg max Z =z]. 2

Y (xy)eD

Otherwise a node ND(%, ¢, t,-) is grown, where v is a test
function selected from a randomly generated set W, maxi-
mizing the expected information gain about the label distri-
bution due to the split {Dlw, DY} of the training data, which
has been induced by 1 [21]:

Y = arg max {E(D) — E(D; ¢')} = arg min E(D; ¢')

Prev P'evw
Y L AT P
= arg min ED; )+ E(DY) 5 .
Wew { D| D|

Finally, the trees ¢; and ¢, are recursively grown with
their respective training data D;p and DY.

In case of unbalanced training data among the differ-
ent classes to be learned, the tree classifiers can be trained
by weighting each label z € ) according to the inverse
class frequencies observed in the training data D, i.e., w, =

(Zmenly =)
in the computation of the expected (weighted) information
gain, which determines the selection of the best test func-
tion during the training procedure. This allows to reduce
the class average prediction error.

The weights are also considered

3. Random Forests in Computer Vision

Recently, random forests were customized for a large va-
riety of tasks in computer vision [5, 11, 20, 19, 21, 22].
Typically, computer vision applications have used random
forests for classification tasks in the image domain, where
the feature space is anchored to a pixel grid topology. They
are trained on a specific feature space &X', which consists of
a set of d x d patches extracted from a set of multi-channel
images Z, where channels may include color features such
as gradients, filter banks, etc.

More formally, a multi-channel training image is a 3-
dimensional matrix [ and I, ,, ) denotes the value at pixel
(u,v) and channel ¢ in the image. A patch is simply a
triplet (u,v,I) € X, representing the coordinates (u,v)
of the patch center in image I € Z. The label space
Y = {1,...,k} is given by the set of k object classes we
are going to find in the images.

Different types of test functions for a patch x =
(u,v,I) € X have been investigated for the classification

task. The following are the most commonly used ones:
W (x| 01,7) =
@ (x|01,02,7) =
w(?’)(x | 61,0, )
@ (x| 01,02, 7) =

L uw,0)4+0, > 7]
[I(u v,0)+601 — I(u v,0)+02 > T]
[I(u v,0)4+61 + I(u v,0)4+02 > T]

|:|I(u,v,0)+91 - I(u,v70)+92’ > T] 5

where 6; = (du;, dv;, ¢;), i = 1,2, are displacement param-
eters relative to the patch center used to index a point in the
patch, and 7 € R is a threshold. Note that test functions of
random type and with randomly generated parameters are
drawn during the training procedure to form the sets ¥ of
split functions in each node of the decision trees.

Once a random forest F' has been trained, the classifi-
cation of a test image can be naively obtained by labelling
each pixel with the most probable class predicted by the for-
est, centered on the d x d patch.

4. Structured Learning in Random Forests

In traditional classification approaches like the one pre-
sented in the previous section, input data samples are as-
signed to single, atomic class labels, acting as arbitrary
identifiers without any dependencies among them. For
many computer vision problems however, this model is lim-
ited because the label space of a classification task does ex-
hibit an inherently topological structure, which renders the
class labels explicitly interdependent. Although this struc-
tured label space is already present in the training data, it
remains largely unexploited by standard classification ap-
proaches, like the random forests introduced in the previ-
ous sections. Consequently, when applying standard ran-
dom forest classifiers for semantic image labelling, the ob-
tained results are quite noisy (e.g., see Figure 2(c)). Indeed,
arandom patch extracted from the labelled image will likely
show a configuration which never appeared in the ground-
truth classification used to train the classifiers.

To overcome this limitation, we propose a novel way
of enriching the standard random forest classifiers by ren-
dering them aware of the local topological structure of the
output label space. Towards this end, we depart from the
traditional classification paradigm and address the problem
from a structured learning perspective [30] within the ran-
dom forest framework.

4.1. Structured Label Space

Our structured label space P consists of d’ x d’ patches
of object class labels, i.e., P = Ya'*xd" With pij €Y we
denote the ij-entry of the label patch p. Additionally, we
index the entries in a way that index (0, 0) takes the cen-
tral position. To distinguish between a patch x from the
feature space X’ (see, Section 3) and a patch p from the



(b) Ground truth

(d) Our method

Figure 2. Examples of object class segmentations using unary clas-
sifiers. Best viewed in color.

(c¢) Random Forest

structured label space P, we refer to them as feature patch
and label patch, respectively. Each training feature patch
x = (u,v,I) has an associated label patch p which holds
the labels of all pixels of image I within a d’ x d’ neigh-
borhood of (u,v) (see, Figure 1). In other words, p;; is the
label of pixel (u + 4, v + j) in image I. Please note that the
size d’ of the label patch may differ from the size d of the
feature patch.

In the next subsection we show how the split function
selection strategy in the nodes of the random forest will be
adapted to account for the new label space. However, for
the moment we will simply assume that the training patches
from D C X x P have been routed through the tree to the
leafs. Consider now a leaf ¢ and let P; C P be the set of
label patches present in the training data used to grow the
leaf (see Figure 8). Then, the class label 7r parametrizing
the leaf is now a structured label of size d’ x d’ from P and
not just an atomic label from ) as in the standard random
forest. A good selection for the structured class label should
represent a mode of the joint distribution of the label patches
in Pt.

In order to keep the complexity of this step low, we com-
pute the joint probability by making a pixel independence
assumption as

Pr(p|P,) = [ Pr" (pi;P1) . 3)
,J

where Pr(*/ )(c|77t) represents the marginal class distribu-
tion over all the label patches of pixel position (4,5). The
label patch 7r is finally selected for leaf ¢ as the one in P

maximizing the joint probability:

7 = arg max Pr(p|P;) . 4)
pPEP:

EAAREES

Selection of 7 based on joint probability

Figure 3. Example of label patches reaching a leaf during training.
Based on the joint probability distribution of labels in the leaf a
label patch 7 is selected.

4.2. Test Function Selection for Structured Labels

The change introduced in the label space should be cou-
pled with an adaptation of the way a test function is selected
in each node of the random forest during the training proce-
dure in order to account for the additional information car-
ried by the structured labels. One naive solution is to port
the test selection criterion actually used in the standard ran-
dom forest to our context, e.g., by simply associating each
patch with the label we find in the center of the associated
label patch p. This, however, results in a split of the train-
ing set which is identical to what the standard random forest
implementation does, without thus properly exploiting the
label topology.

In order to take advantage of the new label space, we pro-
pose to select the best split function at each node based on
the information gain with respect to a two-label joint distri-
bution. Specifically, we associate each training pair (x, p)
with two labels: One label is provided by the patch cen-
tral pixel label pgo, whereas the second one is given by p;;,
where (7, j) is a patch label position which has been uni-
formly drawn (once per node). By adopting this new test
function selection criterion, all entries of a label patch have
the chance to actively influence the way a feature patch is
branched through the tree during the training procedure.

One drawback of this new test selection method is the
increased complexity deriving from the evaluation of the 2-
label joint distribution (|)’|? elements) instead of the simple,
single label distribution (]| elements). To overcome this
we consider also a different test function selection method,
which consists in associating each training pair (x, p) with
just one label, but instead of considering label pgg of the
central pixel, we consider a label p;; from a random posi-
tion (4, j), which is generated once per node. By so doing,
we still have the effect that all entries of the label patch may
influence the learning procedure, but at no higher computa-
tional cost.



4.3. Structured Label Predictions

The structured predictions gathered from the trees of a
forest have to be combined into a single label patch predic-
tion. To this end, we follow a procedure which is similar to
the one adopted in order to select the label patch 7 in a leaf
(see Section 4.1).

Consider a trained forest F, a test patch x = (u,v,I).
and let Pr be the set of predictions for x gathered from
eachtreet € F:

Pr={h(x[t)eP : te F}. o)

Similarly to (4), the label patch prediction of the forest F’
for feature patch x is given by the one maximizing the patch
label joint probability estimated from Pp, i.e.,

p* = arg maxPr(p | Pr), (6)
PEPFE

where Pr(p|Pr) is defined as in (3).
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Figure 4. Prediction of the structured label of a feature patch in
a random forest. The feature patch is routed through each tree in
the forest according to the test functions ¥ in the tree nodes until a
leaf is reached, holding the learned label transitions between color-

coded classes. The structured label in the leaf is then assigned to
the feature patch. Best viewed in color.
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4.4. Simple Fusion of Structured Predictions

As opposed to standard classification algorithms which,
given a test image I, directly assign an object class label to
a each pixel, our classifiers cast a prediction for each pixel,
involving also the neighboring ones. Indeed, if p € P is the
patch label predicted for pixel (u,v) in a test image then a
neighbor (u + i,v 4 j) ina d’ x d’ neighborhood of (u, v)
could be classified as p;; € ). Hence, for each test pixel we
collect d’ x d’ class predictions, which have to be integrated
into a single class prediction. A simple way of performing
this operation consists in selecting the most voted class per
pixel. This process is illustrated in Figure 5.

The outcome of this fusion step is a labelling £ from the
set £ of all possible labellings for the image, ¢,,,, € ) being
the class label associated with pixel (u, v).

1| )

Figure 5. Fusion of structured predictions. Each pixel collects
class hypotheses from the structured labels predicted for itself and
neighboring pixels, which have to be fused into a single class pre-
diction. For clarity reasons, only 5/9 label patches are drawn. Best
viewed in color.

4.5. Optimizing the Label Patch Selection

A different and more principled approach to the compu-
tation of the final labelling can be obtained by optimizing
the label patch selection with respect to a given labelling
rather than solely taking (6) for each pixel. This allows to
better exploit the label patch diversity in the set of predic-
tions Pr obtained from (5).

We define the agreement of an individual label patch p
located at (i,7) € I with a given labelling ¢ € L as the
number of corresponding pixels sharing the same label, i.e.

") = D [pu-iw-p =Luw]. D

(u,w)er

Furthermore, let z € Z; be an assignment of label patches
to pixels in I, z,, € Pr being a label patch for pixel (u,v)
taken from (5), where Z; denotes the set of all such as-
signments for image I. Then, for a particular configuration
z € Z; and a labelling £ € L, the total agreement ®(z, £)
is defined as the sum of agreements of each label patch in z
with the labelling £ according to

q)(Z,E): Z ¢(U71))(Zuv7£)- (8

(u,w)er

As we want to find the label patch configuration that leads
to the maximum total agreement with the labelling of a
test image I, we can write the optimal solution as a pair
(z*,€%) € Z; x L, where

(z",€") € arg max {P(z,£)|(z,£) € Z; x L} . (9)
(z7£)

To solve (9), we use a simple, iterative optimization method
that alternates between selecting the best agreeing label
patch per pixel and producing a new labelling as described
in Section 4.4. For a more detailed description, we refer the
interested reader to our recent work [15].



5. Experiments

In this section we evaluate our proposed structured learn-
ing random forest algorithm on the challenging CamVid [9]
and MSRCv2 [27] databases for the task of semantic im-
age labelling. For performance reasons, we implemented
our method in C++ and ran all experiments on a standard
desktop computer with 2.9 GHz and 2 GB RAM.

In all our experiments we show a comparison to a stan-
dard random forest implementation (denoted as *Our Base-
line RF’), which is actually a special instance of our method
with a label patch size of 1 x 1 and a fixed label center po-
sition. Where available, we list results of state-of-the-art
methods [27, 9, 14] that are also using random forests (but
not the same features), in order to show that our baseline
random forest implementation achieves state-of-the-art per-
formance. Additionally, we compare to the results obtained
when minimizing the energy term of a pairwise, conditional
random field (CRF) model with graph cuts, using the pub-
licly available GCO [7] implementation'. To this end, we
provide the class label statistics of the baseline random for-
est as unary or data terms and use the standard, contrast-
sensitive Potts model as suggested in [6] for the pairwise or
smoothness term.

To show the impact of the respective stages of our
method, we evaluate different training [’ Structure’ / "Full’]
and classification [’Simple Fusion’ /’Optimized Selection’]
procedures as follows: ’Structure’ considers the structured
label patches but only takes one random label position, i.e.
a single label distribution into account for training. Full’
considers structured label patches and the two-label joint
distribution in the split functions (see Section 4.2 for more
details). ’Simple Fusion’ and ’Optimized Selection’ refer
to the fusion methods of the structured output predictions
as described in Sections 4.4 and 4.5, respectively.

We used the same, primitive low-level features for train-
ing both, our baseline and our novel structured learning
random forests, since our primary intention is to show the
improvement when the label topology is taken into ac-
count: CIELab raw channel intensities, first and second or-
der derivatives as well as HOG-like features, computed on
the L-Channel. In all experiments we fixed the feature patch
size to 24 x 24 and trained 10 trees, using 500 iterations for
the node tests and stopping when less then 5 samples per
leaf were available.

We list the scores of our experiments according to the
same evaluation criteria as used in [27, 9, 14] and addition-
ally include the more strict average intersection vs. union
score as e.g. used in the PASCAL VOC challenges [10]. In
particular, *Global’ refers to the percentage of all pixels that
were correctly classified, *Avg(Class)’” expresses the aver-

"http://vision.csd.uwo.ca/code/
2 True Positives

True Positives + False Negatives

Method Global Avg(Class) Avg(Pascal)
RF using Motion and Structure cues [9] 61.8 43.6

Our Baseline RF 69.9 422 30.6
Our Baseline RF + CRF 74.5 45.4 33.8
Our method (Structure + Simple Fusion) 74.8 45.0 34.1
Our method (Full + Simple Fusion) 76.8 46.1 354
Our method (Full + Optimized Selection) 79.2 46.0 36.2

Table 1. Classification results on CamVid database for label patch
size 13 x 13.

age recall over all classes and *Avg(Pascal)’® denotes the
average intersection vs. union score.

5.1. CamVid Database Experiments

The Cambridge-driving Labeled Video Database
(CamVid) [9] is a collection of videos captured on road
driving scenes. It consists of more than 10 minutes of high
quality (970 x 720), 30 Hz footage and is divided into four
sequences. Three sequences were taken during daylight
and one at dusk. A subset of 711 images is almost entirely
annotated into 32 categories, but we used only the 11
commonly used categories with the same splits for training
and testing as presented in [9, 28].

We resized the training images by a factor of 0.5 and ran-
domly collected training samples on a regular lattice with a
stride of 10, resulting in approximately 850k training sam-
ples. The training time per tree is 23 minutes when using the
single label test and 30 minutes with the joint label test. For
the experiment where we only consider the labelling tran-
sitions, we reduced the stride to 8. In order to correct the
imbalance among samples of different classes, we applied
an inverse frequency weighting as mentioned in Section 2.

CamVid - 11 Classes. The standard protocol for evalu-
ating on the CamVid database considers the following 11
object categories, forming a majority of the overall labelled
pixels (89.16%): ROAD, BUILDING, SKY, TREE, SIDE-
WALK, CAR, COLUMN_POLE, SIGN-SYMBOL, FENCE,
PEDESTRIAN and BICYCLIST. In Table 1 we list our re-
sults using a label patch size of 13 x 13, clearly indicating
the performance boost when using our proposed structured
learning method over the standard random forest. We can
achieve comparable results to the CRF implementation with
the Simple Fusion approach and significantly increase the
scores using the Optimized Selection. We explain this by
the fact that our method is restricted to pick from a candi-
date set of semantically plausible label patches provided by
the trees, rather than propagating arbitray label configura-
tions in the associated graph.

In Figure 6 we show the influence of the label patch size,

3 True Positives

True Positives + False Negatives + False Positives
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Figure 6. Classification results on CamVid database as a function
of the label patch size using Simple Fusion.

Method Global Avg(Class) Avg(Pascal)
Our Baseline RF 63.8 442 29.8
Our Baseline RF + CRF 68.2 48.2 333
Our method (Structure + Simple Fusion) 69.9 50.4 35.0
Our method (Full + Simple Fusion) 71.6 50.1 35.8
Our method (Full + Optimized Selection) 72.5 51.4 36.4

Table 2. Classification results for labelling transitions on the
CamVid database for label patch size 11 x 11.

i.e. the size of the considered label topology during train-
ing and classification using the configuration "Full + Simple
Fusion’. It is clearly shown that even a small neighborhood
(> 5 x b) leads to a significant boost in the classification
stage.

Labelling Transition Evaluation. In this experiment we
evaluate only the transitions between object classes to
demonstrate the impact of structured predictions on the la-
bel border classification results. To perform this exper-
iment, we discarded all labels in the ground truth infor-
mation when they were outside a radius of 24 pixels to a
transition between two or more classes. This results in a
drop to 41.9% of the original amount of labelled pixels.
In Table 2, the corresponding results are listed when us-
ing a label neighborhood of 11 x 11. Although the global
score has slightly dropped compared to the previous exper-
iment, we obtain improvements on the (stricter) Avg(Class)
and Avg(Pascal) criteria. This strengthens our assumptions
that the proposed framework yields to superior results, espe-
cially when classifying transitions between object classes.

5.2. MSRCv2 Database Experiments

To show that our method also yields to an improve-
ment when the images are not entirely labelled, we per-
formed another experiment on the MSRCv2 Database [27].

Method Global Avg(Class) Avg(Pascal)
Texton forests naive (supervised) [26] 49.7 34.5

RF using covariance features [14] 55.8 422

Our Baseline RF 54.8 43.4 28.3
Our Baseline RF + CRF 61.0 52.8 35.1
Our method (Structure + Simple Fusion) 60.8 51.0 33.8
Our method (Full + Simple Fusion) 60.8 51.1 33.9
Our method (Full + Optimized Selection) 63.9 55.6 37.6

Table 3. Classification results on MSRCv2 database for label patch
size 11 x 11.

Figure 7. Qualitative labelling results on images of the MSRCv2
database. Top row: Original images with ground truth annotations.
Second row: Labelling using our baseline random forest classifier.
Third row: Full + Simple Fusion. Last row: Full + Optimized
Selection. Best viewed in color.

This database consists of 532 images containing 21 object
classes and predefined splits into 276 training and 256 test
images. We collected the training samples on a regular lat-
tice with a stride of 5, leading to approximately 500k train-
ing samples and training times of 13 and 17 minutes per tree
using single or joint label distributions, respectively. In con-
trast to the almost completely labelled CamVid database,
the labellings for MSRCv2 are only available for 71.9% of
the pixels, hence more roughly sketching the object classes
of interest. In Figure 7 we show some qualitative results and
in Table 3, we provide the scores for a label neighborhood
size of 11 x 11 and again find an improvement with our
structured learning algorithm. The gain of using the joint
statistics over the single label distribution seems to vanish
in the Simple Fusion approach, however, we explain this
by the fact that our algorithm does not see enough properly
labelled transitions between different classes.
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Figure 8. Illustration of feature patches with corresponding la-
bel patches, collected from different leaf nodes when trained on
CamVid database. Bottom rows: Label sets and associated colors.
Best viewed in color.

6. Conclusions

In this paper we presented a simple and effective way
to integrate ideas from structured learning into the popular
random forest framework for the task of semantic image la-
belling. In particular, we incorporated the topology of the
local label neighborhood in the training process and there-
fore intuitively learned valid labelling transitions among ad-
jacent object categories. During the tree construction, we
used topological joint label statistics of the training data
in the node split functions for exploring the structured la-
bel space. For classification, we provided two possibili-
ties for fusing the structured label predictions: A simple
method using overlapping predictions and a more princi-
pled approach, selecting most compatible label patches in
the neighborhood. We provided several experiments on the
callenging CamVid and MSRCv2 databases and found su-
perior results when compared to standard random forest or
conditional random field (using pairwise potentials) classi-
fication results. In our future work we will investigate how
the output of our classifiers can be used as higher-order po-
tential generator in a CRF.
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